A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic) in Namibia: Prelude to snowball Earth?

نویسندگان

  • Galen P. Halverson
  • Paul F. Hoffman
  • Daniel P. Schrag
  • Alan J. Kaufman
چکیده

[1] A large (11–15%) negative shift in dC is observed in shallow water carbonates directly beneath Neoproterozoic glacial deposits (or correlative disconformity) in northwest Namibia ascribed to a snowball Earth. Reproducibility and stratigraphic concordance of this anomaly in 16 sections across the ancient continental shelf support a primary origin, and field relations show it predates the fall in sea level associated with the Ghaub glaciation. We crudely estimate the duration of the isotopic shift as 0.6 10 years from a simple thermal subsidence model. Similar or larger dC anomalies are found directly beneath Neoproterozoic glacial units in Australia, Canada, China, Scotland, and Svalbard. After considering conventional interpretations for negative dC anomalies, we conclude that a prolonged methane release to the atmosphere is most consistent with the timescale, magnitude, and geological context of the anomaly in Namibia. Counterintuitively, an anomalous methane flux that is sustained for 100s kyr may be consistent with a snowball glaciation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A neoproterozoic snowball earth

Negative carbon isotope anomalies in carbonate rocks bracketing Neoproterozoic glacial deposits in Namibia, combined with estimates of thermal subsidence history, suggest that biological productivity in the surface ocean collapsed for millions of years. This collapse can be explained by a global glaciation (that is, a snowball Earth), which ended abruptly when subaerial volcanic outgassing rais...

متن کامل

On the initiation of a snowball Earth

[1] The Snowball Earth hypothesis explains the development of glaciation at low latitudes in the Neoproterozoic, as well as the associated iron formations and cap carbonates, in terms of a runaway ice-albedo feedback leading to a global glaciation followed by an extreme greenhouse climate. The initiation of a snowball glaciation is linked to a variety of unusual perturbations of the carbon cycl...

متن کامل

A snowball Earth versus a slushball Earth: Results from Neoproterozoic climate modeling sensitivity experiments

The Neoproterozoic was characterized by an extreme glaciation, but until now there has been no consensus as to whether it was a complete glaciation (snowball Earth) or a less severe glaciation (slushball Earth). We performed sensitivity experiments with an Earth model of intermediate complexity for this period of dramatic global cooling. Our simulations focus on the climate response on a cool v...

متن کامل

Climate simulations of Neoproterozoic snowball Earth events: Similar critical carbon dioxide levels for the Sturtian and Marinoan glaciations

The Sturtian and Marinoan snowball Earth episodes initiated 720 and 650 million years ago, respectively, are among the most dramatic events in Earth’s history. The ultimate causes of these events remain obscure, however, and there is still uncertainty about the critical levels of greenhouse gas concentrations at which the snowball transition occurs. Furthermore, earlier modelling results (with ...

متن کامل

Neoproterozoic glaciation in the Earth System

The Neoproterozoic contains severe glacial intervals (750–580 Ma) including two extending to low palaeomagnetic latitudes. Paucity of radiometric dates indicates the need for chronostratigraphic tools. Whereas the marine Sr/Sr signatures show a steady rise, C fluctuates, the most reproducible variations being negative signatures in carbonate caps to glacial units, but more diagenetic work is ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002